UltraScience Net

Ultra High-Speed Research Network for Large-Scale Science

Bill Wing, Nagi Rao

Oak Ridge National Laboratory

Historical Perspective and Motivation

- Early adoption of advanced network technologies: Examples: ESnet was first to WAN deployment of ATM; TCP slow start and congestion control
- NGI QOS Testbed First network-wide testbed for QoS technology used in the Qbone
- Clipper Project High-speed data transfer testing of dedicated OC-12 for High Energy applications
- MORPHnet: A framework for using a fraction of ESnet bandwidth to conduct experimental networking activities - never implemented
- Experimental (breakable) networking environment to develop, test, deploy, and prototype advanced networking technologies and network-intensive high-impact applications is a critical component in SC networking roadmap
- Advanced cost-effective networking technologies for science communities beyond the Internet are not commercially available
- The unique networking requirements of the DOE Office of Science are not adequately and timely addressed by the industry and other federal network research programs
- Budget trends and realities require innovations and new models of cost-effective networking technologies

Series of DOE Workshops

Development of Office of Science Networking Requirements

DOE Networking Workshops:

- High-Performance Networks for High-Impact Science, Aug 13-15, 2002.
- Network Provisioning and Protocols for High-Impact Science, April 10-11, 2003.
- DOE Science Networking Challenge: Roadmap to 2008, June 3-5, 2003

Other Agency Workshops:

- 1. NSF Workshop on Ultra-High Capacity Optical Communications and Networking, October 21-22, 2002
- 2. NSF Workshop on Network Research Testbeds, October 17-18, 2002

DOE Networking Workshop Summary - I

- Diverse domain networking requirements
 - Guaranteed QoS, best-effort, real-time capabilities, batch services, email, local/national/intercontinental large file transfers
 - 2. On-demand bandwidth, dedicated bandwidth, shard network capabilities, SANs-LANs challenges
 - 3. Transparent cyber-security, distributed trust, Lab-based cyber security architecture, DOE cyber security policy, etc.
- Distributed terascale computing facilities and petabytes data archives need seamless access
 - Resources located across the country
 - 2. Users located at universities, national laboratories, industry
- Critical and timely networking requirements for large-impact science
 - 1. Advanced and deployable networking capabilities for LHC experiments, SNS, climate modeling, astro-physics, and computational biology
 - 2. Leverage current opportunities in telecommunication industry and mature optical network technologies to build advanced networking infrastructures for science

DOE Networking Workshop Summary - II

Science Areas	Today End2End Throughput	2008 End2End Throughput	2013 End2End Throughput	Remarks: Basic research, testing and deployment
High Energy Physics	0.5 Gbps E2E	100 Gbps E2e	1.0 Tbps	high throughput
Climate Data & Computations	0.5 Gbps E2E	160-200 Gbps	<i>n</i> Tbps	high throughput
SNS NanoScience	does not exist	1.0 Gbps steady state	Tbps & control channels	remote control & high throughput
Fusion Energy	500MB/min (Burst)	500MB/20sec (burst)	<i>n</i> Tbps	time critical transport
Astrophysics	1TB/week	N*N multicast	1TB+ & stable streams	computational steering & collaborations
Genomics Data & Computations	1TB/day	100s users	Tbps & control channels	high throughput & steering

Office of Science Networking Roadmap (2003 Workshop Report)

Capabilities and migration

Capabilities and migration

High-Ir

Advanced Research Network

- R&D Breakable components
- Scheduled operations
- Ultra high speed components
- Electro/optical components

High-Impact Science Network

- Connect few science sites
- 7x24 operations
- Very high speed four 9s
- Specialized components

Production Networks

- Connects all DOE sites
- 7x24 & reliable four 9s
- Advanced Internet capability
- Predominantly best-effort

DOE Network Research Program

for Large-Scale Science

Vision

 Develop, test, and deploy advanced network technologies to efficiently and securely interconnect scientific resources such as distributed terascale computing resources, petabytes-scale data archives, remote visualizations centers, complex scientific instruments, and research teams

Program Elements

- Research, Development, and Engineering
 - Foundation of high-capacity networks
- Advanced Network Research Testbeds (ANRT) (24% of FY04 budget)
 - ✓ Deployment, and testing of advanced network technologies -- UltraScience Net
- Workforce development
 - Young investigation program

Networking for Large-Scale Science: UltraScience Net and ESnet span only the core

Current Areas of Network Research

- Ultra high-speed data transfer protocols TCP enhancements and alternatives for ultra high-speed networks
- Dynamic provisioning of DWDM optical networks - on-demand bandwidth and dedicated channels
- Network measurement and analysis end-to-end performance monitoring, prediction, and fault diagnosis
- ✓ Advanced research networks experimental network prototyping, testing, and deployment
- Scalable cyber security systems Firewalls and intrusion detection systems

The Case for UltraScience Net

- Meeting the diverse network requirements for high-performance and agile networking beyond current best-effort networks (Internet and ESnet)
- Lack of investment by industry on cost-effective advanced networking technologies for large-scale science
- Implementation of Office of Science recommendations in network roadmap to 2008
- Flat networking budget (FY03, FY04, FY05, FY06?) → Innovation and optimization of existing resources
- Enables development and testing of advanced network capabilities for critical science projects such as LHC (ATLAS and CMS), computational genomics, and SNS, etc.
- Opportunity in industry: abundant dark fiber and mature DWDM optical technologies

Technologies to be developed on UltraScience Net

On-demand dedicated bandwidth channels

- Dedicated SONET/Ethernet channels to science applications IP/non-IP
- 2. Dedicated wavelengths to science application IP/non-IP

Control/Signaling plane for dynamic provisioning

- TI 1/GMPLS
- Secure end-to-end signaling

Ultra high-speed transport protocols testing

- 1. High-throughput TCP variants
- TCP alternatives for IP/non-IP

Prototyping science application for ultra high-speed networks

- 1. High-speed data transfers High energy physics (CSM and ATLAS) ** SciDAC
- 2. Remote computational steering Nuclear and astro physics (TSI) **SciDAC
- 3. Remote visualization Computational genomics
- 4. Remote Instrument control Biology

Ultra high-speed network components

- 1. Cyber security packet filters and firewalls
- 2. Network measurement network and host levels

Community Support for UltraScience Net

DOE Labs

•	FNAL	Provide fiber connection to UltraScience Net at Starlight
		J

ORNL Fiber connection to UltraScience Net in SOX-Atlanta

SLAC DWDM connection to Sunnyvale-California (under discussion)

PNNL Fiber connection to Seattle, Washington

Proposals from science communities to use UltraScience Net

High Energy FNAL - High-throughput transfers of LHC data

Genomics PNNL - Remote visualization of computational biology

Astrophysics ORNL - Real-time data visualization and steering

Fusion General Atomics –WAN QoS using MPLS for fusion energy application

LBL Exploration of MPLS technology for ESnet

Inter-Agency - Collaboration

CHEETAH NSF testbeds use UltraScience Net to reach east coast

DRAGON NSF all-optical network to UltraScience Net to reach Starlight in Chicago

HOPI Internet2 traffic exchange with UltraScience Net

Technology Transfer: UltraScience Net to ESnet

Advanced Technologies: R&D

Prototyping & Testing

Production Deployment

Ultra High Throughput Protocols

- High-speed TCP
- FAST
- Non-TCP
- UDP (Tsunami, UDT, etc)

Agile Network Provisioning

- Dynamic channel provisioning GMPLS
- Bandwidth on-demand SONET/DWDM
- Coarse-Grain QoS
- Dedicated end-to-end optical circuits

Ultra High-Speed Cyber Security

- Firewall
- IDS

Multi-Channel Real-time Communication

- Remote control
- Remote visualization

UltraScience Net

Science **Applications** **End** system **ESnet** Site LANs

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Site LANs

End system

ESnet

End system

Site LANs

ESnet

UltraScience Net

UltraScience Net and ESnet: Combined efforts to meet large-scale science challenges

UltraScience Net Features

- Experimental, breakable, unreliable
- Connect selected DOE sites and research networks
- Scheduled experiments on network research and application prototyping
- Dynamic provisioning of dedicated channels
- On-demand QoS
- Application to-application

UltraScience Net Technologies

Switching/Provisioning

Circuit switching and hybrid packet/circuit provisioning

Backbone

On-demand provisioned SONET/DWDM, 10GigE LAN PHY

Control Plane

Out-of-band TL1 and in-band GMPLS

- Transport
 - 1. TCP, UDP and other
 - 2. non-TCP for dedicated channels

ESnet Features

- Production, highly reliable 4 9s
- Connect all DOF sites and universities
- 7x24 availability for all services provided to all sites
- Static provisioning
- No QoS: Best-effort
- Edge-to-edge

ESnet Technologies

Routing

Packet/routed network

Backbone

POS - packet over SONET

Control Plane

Not applicable

- Transport
 - TCP, UDP and others

ESnet and UltraScience Net Activities

Engineering Collaboration

- Joint ESnet/UltraScience Net engineering design team for UltraScience Net
- ESnet is a collaborator of UltraScience Net
- ESnet engineering participate in the panel review of ultra network/application proposals
- Annual joint ESCC and network research PIs meetings
- ESnet MPLS roll-out on Sunnyvale-Chicago in support of scheduled bandwidth

Inter-Agency Activities Involving ESnet and UltraScience Net

ESnet:

LSN/JET member LSN/JET co-chair (G. Seweryniak)

UltraScience Net

LSN/NRT Member LSN/NRT co-chair (T. Ndousse) NSF CHEETAH (Rao, Wing Pls)

UltraScience Net Operations and Management

Engineering Team

- UltraScience Net Engineering
- 2. ESnet Engineering
- 3. Application Developers

Management Team

- UltraScience Net Engineering
- ESnet Engineering Rep
- ESCC Rep
- ESSC Rep

Research Team - Awards Pending

- Network Research Pls
- 2. Application Prototyping Pls

Management Team Responsibilities

- 1. Prioritize experiments on UltraScience Net
- 2. Schedule testing
- 3. Develop technology transfer strategies

Summary

- UltraScience Net is an advanced experimental network testbed
 - demanded and supported by large-scale science applications of Office of Science
- Large-scale science applications require extreme networking
 - requires in-house efforts because it not cost-effective for industry
- UltraScience Net is an integrated infrastructure
 - developing, testing, and deploying advanced network technologies for next-generation science applications

Q&A

UltraScience Net Website: http://www.csm.ornl.gov/ultranet

